
 Techniques for Mapping Synthetic Aperture Radar Processing
Algorithms to Multi-GPU Clusters

Eric Hayden, Mark Schmalz,
William Chapman, Sanjay Ranka, Sartaj Sahni

Department of CISE, University of Florida
Gainesville, FL 32611-6120, USA

{hayden, mssz, wchapman, ranka, sahni}@cise.ufl.edu

Gunasekaran Seetharaman
Information Directorate

Air Force Research Laboratory
Rome, NY 13441-4514, USA

Gunasekaran.Seetharaman@rl.af.mil

Abstract - This paper presents a design for parallel processing
of synthetic aperture radar (SAR) data using multiple Graphics
Processing Units (GPUs). Our approach supports real-time
reconstruction of a two-dimensional image from a matrix of echo
pulses and their response values. Key to runtime efficiency is a
partitioning scheme that divides the output image into tiles and
the input matrix into a collection of pulses associated with each
tile. Each image tile and its associated pulse set are distributed to
thread blocks across multiple GPUs, which support parallel
computation with near-optimal I/O cost. The partial results are
subsequently combined by a host CPU. Further efficiency is
realized by the GPU’s low-latency thread scheduling, which
masks memory access latencies. Performance analysis quantifies
runtime as a function of input/output parameters and number of
GPUs. Experimental results were generated with 10 nVidia Tesla
C2050 GPUs having maximum throughput of 972 Gflop/s. Our
approach scales well for output (reconstructed) image sizes from
2,048 x 2,048 pixels to 8,192 x 8,192 pixels.

Index Terms—High performance computing, Synthetic
aperture radar, Image reconstruction, Graphics processing unit

I. INTRODUCTION
The use of radio-frequency electromagnetic radiation for

object detection in a synthetic aperture radar (SAR)
configuration comprises a key technique for surveillance
imaging [1,2]. In practice, an electromagnetic pulse from an
emitter location pP is reflected by a target, and the reflected
pulse components are sensed at a receiver location pR and
quantized temporally into NB bins. Given NP pulses, where
each pulse is taken at different sensor configurations of form
(pP, pR), an NP x NB element pulse data matrix P is obtained.

Computational transformation of P into an NxN-pixel
image b that depicts targets within the sensor’s field-of-view
(FOV) requires superposition of pulse effects, implying an
additive process where each pulse and its range bins in P
potentially influences each pixel in b. The globality of this
approach, which uses multiple pulses from different emitter
locations, helps resolve ambiguities resulting from the fact that
a pulse at given time delay references multiple points in the
target plane that are equidistant from the emitter [3].
Advantageously, since the SAR reconstruction concept is
similar in structure (but not identical mathematically) to a
tensor product, one can adapt various distributed processing

strategies developed for the tensor product [4] to implement
SAR image reconstruction on a cluster of GPUs.

In this paper, we present techniques for parallelizing SAR
image reconstruction algorithms to run efficiently on a CPU-
controlled cluster of multiple graphics processing units
(GPUs). Our technique is illustrated in terms of a single-stage
backprojection algorithm whose computer code and data are
available publicly [5,6]. Performance of our approach varies
quasilinearly with NPR, and does not appreciably compromise
the numerical accuracy of the reconstructed image b with
respect to a reference image a. Our technique employs
algorithm-to-architecture mapping methods that feature a mix
of distributed- and shared-memory models that reflect key
GPU organizational constraints.

This paper is organized as follows. Section II provides
theoretical and practical background. Section III presents the
parallelized computer codes that comprise our approach.
Timing and error measurements and analysis are given in
Section IV, with conclusions and suggestions for future work
given in Section V.

II. THEORETICAL AND PRACTICAL BACKGROUND
We begin with a discussion of the single-stage SAR

backprojection algorithm (Section II.A) and then discuss
previous work in parallelizing backprojection algorithms
(Section II.B). An overview of the CPU and GPU
architectures employed (Section II.C) provides practical
background for the subsequent discussion of algorithm-to-
architecture mapping in Section III.

A. Single-Stage SAR Backprojection Algorithm
Several published algorithms for SAR reconstruction from

sensed radar pulse data have been optimized for sequential
systems with relatively low throughput [2]. Here, algorithm
design seems to be influenced by computational performance,
rather than quality of the reconstructed image. In contrast, a
naïve implementation of the single-stage backprojection
algorithm (BP1) [5], is computationally costly but yields high
numerical quality in the reconstructed image.

In practice, BP1 examines the pairing of every received
(postprocessed) pulse with every reconstructed pixel to
estimate object reflectivity at each point in the spatial
representation. BP1 inputs pulse response matrix P, an NP x NB
element matrix of NP pulses and NB response bins obtained by

978-1-4673-5604-6/12/$31.00 ©2012 IEEE

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2012

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Techniques for Mapping Synthetic Aperture Radar Processing
Algorithms to Multi-GPU Clusters

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of CISE, University of Florida Gainesville, FL 32611-6120,
USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADA587934. IEEE International Symposium on Signal Processing and Information Technology
(12th) (ISSPIT 2012) Held in Ho Chi Minh City, Vietnam on December 12-15, 2012. AOARD-CSP-131010.

14. ABSTRACT
This paper presents a design for parallel processing of synthetic aperture radar (SAR) data using multiple
Graphics Processing Units (GPUs). Our approach supports real-time reconstruction of a two-dimensional
image from a matrix of echo pulses and their response values. Key to runtime efficiency is a partitioning
scheme that divides the output image into tiles and the input matrix into a collection of pulses associated
with each tile. Each image tile and its associated pulse set are distributed to thread blocks across multiple
GPUs, which support parallel computation with near-optimal I/O cost. The partial results are subsequently
combined by a host CPU. Further efficiency is realized by the GPUs low-latency thread scheduling, which
masks memory access latencies. Performance analysis quantifies runtime as a function of input/output
parameters and number of GPUs. Experimental results were generated with 10 nVidia Tesla C2050 GPUs
having maximum throughput of 972 Gflop/s. Our approach scales well for output (reconstructed) image
sizes from 2,048 x 2,048 pixels to 8,192 x 8,192 pixels.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

temporally quantizing the received reflections of each radar
pulse (Section I). For a given pulse, responses sensed later in
time are physically further from emitter location pP, thusly are
placed into higher-numbered range bins. For each pixel in the
output image, every pulse and range bin in that pulse is
considered separately. The value in a given range bin is added
to the value of the associated pixel of the reconstructed SAR
image. Brighter areas in the reconstructed image are
associated with greater target reflectivity.

Implementationally, we observe that for matrices A and B,
the tensor product C = A ⊗ B pairs each element aij of A with a
sub-matrix b in B to form the partial product cij = aij * b, where
(*) denotes pointwise multiplication. In practice, a host
processor marshals products cij to form the matrix C.

We exploit this tensor product structure for SAR image
reconstruction (albeit with different mathematical details) by
associating each pulse and bin in P with each pixel of b. In
particular, let P[i].bin[j] denote the jth range bin of pulse i after
phase correction, and let (P[i].x, P[i].y, P[i].z) denote the
source of pulse i with respect to a prespecified origin. If each
pulse has range [Rstart, Rend], then the intensity of output image
b corresponding to physical location (x,y) can be written as:

b(x,y)

(1)

Note that this model captures the data movement patterns

of BP1, although our implementation includes several
enhancements that improve output quality. For instance, in
Equation (1), it was assumed that b(x,y) maps to a range bin
indexed by an integer. In practice, reconstructed pixels are
associated with temporal intervals that can overlap range bins,
and can be thought of as mapping to bins that have a fractional
index. In such cases, an interpolated (smoother) image can be
generated by examining range bins adjacent to a fractionally-
indexed bin, then computing their weighted average based on
their distance from this bin. However, such enhancements are
not the focus of this paper; we view any implementation of the
backprojection algorithm with a data access pattern as shown
in Equation 1 as being logically equivalent. For additional
details, the reader is referred to [2].

B. Related Work
The approach presented herein implements fast parallel

processing of SAR data as well as reconstruction of a two-
dimensional SAR image. Additionally, our techniques could
be applied to a domain where sensor response data is projected
back to form an image of a surface or object. For example,
computer-aided tomography, featuring the construction of a 3-
D model from a set of 2-D cross-sectional views, as in medical
imaging for obtaining a three dimensional view of tissue in
vivo. Here, each volumetric unit or voxel has properties similar
to a reconstructed SAR pixel, and the tensor-product-like
structure holds. Namely, each voxel in each cross-sectional
view is associated with a response value that is spatially near
the response of its neighboring voxel. Similarly, a given
volume of output data will require a predictable quantity of

sensor response data in each cross section. The preservation of
these properties ensures that our partitioning scheme provides
efficient data access mechanisms for generating tomograms
[7,8].

Other potential applications differ from the preceding
applications involving image sampling. For example, network
tomography infers network characteristics from observations
taken at known locations. In this case, each node in the
network core is analogous to a pixel in the SAR output image,
and each network location is conceptually similar to a radar
pulse. Observe that the latency or reliability of a channel can
be inferred from the repeated transfer of packets between
locations. The projection of this data back onto the nodes
through which packets have travelled can produce a visual
representation of the network at any time, without requiring
explicit assistance from core nodes. In this paradigm, spatial
locality follows from the route optimization properties of
routing protocols [3,9].

A similar problem involves estimation of ocean
temperatures from acoustic wave propagation latencies, as the
speed of sound in water varies inversely with water
temperature. By measuring acoustic wave propagation times
between multiple emitters and receivers, a set of cross
sectional images can be constructed analogous to cross
sections in computer-aided tomography. Small three
dimensional units of water, not unlike the voxels of computer
aided tomography, become the unit onto which acoustic sensor
response data is projected. Spatial locality of input data
follows from the output partitioning scheme [10].

C. Graphics Processing Unit (GPU)
GPU devices primarily support fast, photorealistic image

rendering for video gaming applications. GPUs have recently
been applied to supercomputing, due to fast SIMD processing
and the ability of some GPUs to compute double-precision
floating point arithmetic [11]. Additionally, GPUs have a huge
installed base that amortizes significant research and
development expenditures, thereby achieving relatively low
unit cost (<100 USD) with frequent upgrades.

Unfortunately, GPUs feature a hierarchical memory
structure that is understandably designed for fast graphics
operations, but does not necessarily support all scientific
computations. This particularly holds for image and signal
processing with large operands, and for grid- and mesh-based
simulation using huge model domains. Typical GPU multi-
level memory structure combines a shared memory model
(DRAM or global memory and L2 cache or shared memory in
Fig. 1) in the context of groupings of cores (processing
elements) called multiprocessors or streaming multiprocessors
having local memory (L1 cache in Fig. 1). As a result of the
varying latencies between DRAM, L2 and L1, as well as small
local memories, data movement across a GPU is fraught with
challenges that feature memory access latencies which can be
quite large for apparently simple operations.

As a result, the porting of legacy code to GPUs has
emphasized manual optimization, although recent reports
indicate some automation is possible [12]. In practice,
application-to-architecture mapping can be supported by an

underlying code-oriented architecture. For example, the
Nvidia Tesla C2050 GPU used in this study has 14 streaming
multiprocessors (SMs), each containing 32 processing
elements or cores – totaling 448 cores per device. To
coordinate many cores, GPUs arrange threads into thread
blocks. In particular, each thread block embodies the execution
of a single code fragment (or kernel) across multiple parallel
threads that execute on a single SM. So, at least 14 thread
blocks are needed to engage all 14 SMs in a C2050 GPU and
each thread block must comprise at least 32 threads to engage
the 32 cores in an SM. In practice, to effectively hide memory
latency, may more thread blocks and many more threads per
block are often needed.

Fig. 1. High-level view of Nvidia Tesla C2050 GPU architecture.

During program design, a programmer specifies the parts
of an application that are suited for threaded (parallel)
execution, by labeling them as kernels using syntax specified
by the GPU programming language (e.g., CUDA for an
Nvidia Tesla processor). At runtime, the threads of a thread
block can access a common shared memory, thereby
supporting a form of inter-thread communication. A much
slower global memory, accessible from all thread blocks, helps
transfer data to and from the host as well as to and from the
shared memory of the SMs [11]. This global memory also
facilitates inter-block and inter-SM communication. As in
other hierarchically-configured memory systems, high
performance implies emphasizing local (intra-SM) memory
operations, with minimal data transfer to and from slower
memory devices.

GPUs can operate efficiently with thousands of threads
running simultaneously, as thread scheduling is implemented
directly in hardware with negligible overhead compared to
program execution time. Support for many threads allows
masking of memory access latencies: other threads can operate
while paused threads wait for I/O operations to complete.

The BP1 algorithm is an ideal candidate for GPU
implementation, since (a) each output pixel can be viewed as
the sum of the contribution of all input pulses, and (b) the set
of operations used to calculate this contribution is not

dependent on the value of the input. However, some clever
data partitioning is required to realize efficiency. Efficient
single GPU implementations of BP1 were described by us in
[3,13].

III. MULTI GPU ALGORITHM DESIGN AND IMPLEMENTATION
The SAR backprojection algorithm (BP1) was

implemented via partitioning of the pulse matrix P and
reconstructed image b, as discussed in Section III.A. Code
structure is discussed in Section III.B.

A. Algorithm-to-Architecture Mapping Technique
In order to restrict the pulse data in P to fit in GPU local

memory, but not to be so small to cause excessive latency due
to repetitive memory accesses, we employed a projection
function f that relates the sensing geometry for a given
response P(i,j), specific to the ith pulse and jth range bin, to the
corresponding pixel coordinate(s) in b [3]. Let P have NP x NB
domain Y, and let b have Nx x Ny domain X. The forward
projection function f : Y → 2X forms a basis for derivation of
a reverse projection function g : 2X → 2Y. The function g is
useful for our BP1mg multi GPU implementation, because it
accepts the coordinates of a reconstruction neighborhood (also
called a tile) denoted by T ⊂ X, and produces the
neighborhood N(Y) which denotes the coordinates of pulses
corresponding to the restriction b|T. Due to sensing geometry
at typical altitudes, we have |N(Y)| << |p1(Y)|, where |S|
denotes cardinality of set S, and pk denotes projection to the kth

coordinate.
In particular, in this study we specified a KxK-pixel tile T

to which we applied g, thereby supporting the following
restriction of the pulse matrix:

 P′ = P |g(T) (2)

which was then assigned to a thread block for processing by a
streaming multiprocessor to yield b|T. This partial result was
sent to the CPU for accumulation into reconstructed image b.

Fig. 2. Tile- and thread-block-based mapping technique for multi-GPU

computation of algorithm BP1mg shown in Figure 6 (from [3]).

Given this approach (see Fig. 2), efficiency is realized by
(a) minimizing | P′ | without compromising reconstruction
accuracy, (b) balancing K, Nx, and Ny to minimize I/O and
memory latencies associated with the tiling of b, and (c)
designing an efficient reverse projection g which can be done
with (i) table lookup or (ii) explicit coordinate computations.
The Nvidia Tesla C2050 GPU that was employed in this
study, being optimized for graphics, is well suited to either i)
or ii). In this paper, due to space limitations, we focus on

techniques a) and b). The reader is referred to [3,13] for a
discussion of the technique in method c).

B. Code Examples
Parallelization of BP1, which was specified in MatlabTM ,

as overviewed in Fig. 3), was first expressed in C as outlined
in Fig. 4, then in the CUDA language, as outlined at a high
level in Fig. 5 (single-GPU version) and Fig. 6 (multi-GPU
cluster version).

Fig. 3. Outline of Matlab code for BP1 backprojection algorithm.

Fig. 4. Outline of C code for BP1 parallel backprojection algorithm. Note

the use of the MPI #pragma parallel construct for the distributed
memory model illustrated in Fig. 1.

Given the code for BP1mg outlined in Fig. 6, which uses
the mapping approach portrayed notionally in Fig. 2, we
measured kernel runtime and numerical error associated with
the serial and parallel BP1 codes, for a multicore CPU
controlling up to 10 Nvidia Tesla C2050 GPUs, as follows.

Fig. 5. Outline of single GPU code for BP1sg backprojection algorithm.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
The multi-GPU version of backprojection algorithm BP1,

hereafter called BP1mg, was compiled with the C/MPI
compiler gcc version 4.1.2 Revision 20080704 (Red Hat 4.1.2-
52) and the CUDA compiler Release 4.0, V0.2.1221, on five
remote nodes of the Condor architecture [14], where each
remote node has two Nvidia C2050 GPUs (see Fig. 2). One
thread was used on each of six CPUs: one on the localhost
(which had no GPU) and five on the remote nodes. The
localhost and each remote node had an Intel Xeon 6-core CPU
X5650 running at 2.67GHz with hyperthreading. The GPU
code, BP1mg, is structured as shown in Fig. 6.

Fig. 6. Outline of multi-GPU code BP1mg for backprojection algorithm.

A hand-optimized version of BP1mg was tested using the
Tesla C2050’s double precision floating point arithmetic. The
input data (pulse data, antenna locations, etc.) as well as the
reconstructed image are single precision floating point; all
operations in the reconstruction kernel are performed in
double precision. Pulses before (respectively, after) the
Inverse Fast Fourier Transform (IFFT) are 5,592 pulses (resp.
16,384 pulses).

A. Runtime Measurement and Analysis
Timing data for BP1sg and BP1mg are presented in Tables

I (total runtime) and II (kernel runtime), with the same
parameters as for the reference single-GPU algorithm BP1sg
similar to that described in [3]. Total execution time (sec,
including I/O, message passing, memory allocation and

TABLE I. TOTAL RUNTIME IN SECONDS FOR SINGLE- AND MULTI-GPU
VERSIONS OF THE BP1 BACKPROJECTION ALGORITHM.

Runtime Algorithm Version
Nx x Ny BP1sg BP1mg/max Speedup

2048x2048 15.357 2.494 6.158 x
4096x4096 48.080 6.468 7.434 x
8192x8192 178.806 22.039 8.113 x

L.1 // Read all pulse data into host CPU memory
L.2 // Write all pulse data onto GPU device memory
L.3 // Perform Inverse FFT for all Pulse data on the GPU
L.4 // Perform FFT Shift for all Pulse data on the GPU
L.5 Call kernel to perform reconstruction
L.6 for each pulse in the Npulses dataset
L.7 // Perform reconstruction of four pixels per
 CUDA thread
L.8 end
L.9 end of kernel
L.10 // Read reconstructed image from GPU device
L.11 // Write image to file

L.1 // Master thread sends arguments to slave threads (STs)
L.2 // Master thread reads data file and broadcasts it to STs
L.3 // Each slave thread is assigned a subset P′ of the total
 number of pulses for each device.
L.4 // Each device performs Inverse FFT and Shift on P′
L.5 // Each device performs image reconstruction given
 the pulse subset P′
L.6 for each set P′ of pulses from the dataset P
L.7 for each pixel assigned to thread in the Nx x Ny
 construct image tile b|T
L.8 // Perform reconstruction on the tile
L.9 end
L.10 end
L.11 // Each slave thread merges the reconstructed image
 given the reconstructed tiles from each device
L.12 // Master thread merges the reconstructed tiles from
 each slave thread to yield reconstructed image b
L.13 // Master Thread writes the reconstructed image to file

L.1 For each set of pulses P′ from the dataset P
L.2 // Read in a the next pulse set P′ serially,
 using one thread
L.3 // Perform Inverse FFT and Shift operations on
 this set of pulses in parallel
L.4 #pragma parallel for each pixel in the Nx x Ny
 output image b
L.5 // Perform image reconstruction
L.6 end
L.7 end

L.1 // Read all pulse data into memory
L.2 for each pulse in the Npulses dataset
L.3 // Perform Inverse FFT (ifft)
L.4 // Perform FFT Shift
L.5 for each pixel in the Nx x Ny output image
L.6 // Perform image reconstruction
L.7 end
L.8 end
L.9 // Write image to file

transfer, and IFFT/Shift) for double-precision GPU cluster
version BP1mg (labeled “Multi”) of the single-stage
backprojection algorithm (Npulses = 5,004). Speedup is
computed from the maximum runtime for all cases of BP1mg,
with respect to the single-GPU version BP1sg. Timing data
for total run time are summarized graphically in Fig. 7.

As shown in Table II, the kernel speedup for image sizes
ranging from 4Kx4K to 8Kx8K effectively equals the
expected theoretical value of 10x. Slight differences in
speedup (e.g., 10.019x instead of 10x) result from systematic
errors due to limited temporal resolution of the tic…toc timer
mechanism.

TABLE II. KERNEL RUNTIME IN SECONDS FOR SINGLE- AND MULTI-GPU
VERSIONS OF THE BP1 BACKPROJECTION ALGORITHM.

Runtime Version / Number of GPUs
Nx x Ny BP1sg BP1mg/1 BP1mg/2 BP1mg/3 BP1mg/4 BP1mg/5

2048x2048 11.39 1.133 1.132 1.132 1.231 1.232
4096x4096 44.05 4.333 4.384 4.387 4.383 4.415
8192x8192 173.79 17.051 17.247 17.254 17.255 17.246

Runtime Version / Number of GPUs (cont’d)
Nx x Ny BP1mg/6 BP1mg/7 BP1mg/8 BP1mg/9 BP1mg/10 Speedup

2048x2048 1.198 1.200 1.201 1.199 1.152 9.243x
4096x4096 4.384 4.386 4.387 4.399 4.415 9.978x
8192x8192 17.346 17.334 17.334 17.335 17.346 10.019x

Fig. 7. Total Execution Time, BP1mg algorithm running in double

precision floating point arithmetic on one to five Condor nodes with MPI.

B. Reconstruction Error Measurement and Analysis
In the following discussion, we refer to average error and

maximum error, which are computed as follows. Assume that
a reference image a is an Nx x Ny pixel array, which is used as
a basis for comparing the reconstructed image b, also an Nx x
Ny pixel array, by computing a difference image d as:

 d(i,j) = c(i,j) – a(i,j), 1 < i < Nx and 1 < j < Ny . (3)

The maximum error and average error are defined from d,
as follows:

 emax = Vi,j d(i,j) / range (4)
and
 eave = Σi,j d(i,j) / (range Nx Ny) , (5)

where range denotes the range of pixel values in b.

In tests using Equations 3-5, we found that the average and
maximum output errors were identical to the output error for
the double-precision single-GPU algorithm BP1sg outlined in
Fig. 5. This is reasonable, since BP1mg is mathematically the
same as BP1mg, but runs on multiple GPUs instead of a single
GPU device.

We have also found that measured error figures depend on
the version of the Tesla C2050 architecture (e.g., SM10 or
SM20), as well as the trigonometric functions employed. In
particular, sincosf and _sincosf refer to a combined
trigonometric function that computes in single precision, while
sincos refers to a combined trigonometric function that
computes in double precision.

For GPU version SM10 operating in single precision mode,
the maximum error (relative to double precision version SM20
using sincos) for the 4Kx4K output image was 4.42 / 255 (or
2.8 percent), and 5.45 / 255 (or 3.45 percent) for the 8Kx8K
image. However, for both images the average error was the
same (0.0511 / 255 or 0.03 percent). We have found that the
maximum error and average error were unaffected by the
precision of the trigonometric functions.

In the case of GPU version SM20 operating in single
precision mode, the maximum and average errors were
similarly unaffected by the precision of trigonometric
functions. For the 4Kx4K image, the max error was 2.32 / 255
or 1.65 percent, while for the 8Kx8K image, the maximum
error was 2.60 / 255 or 1.65 percent. The average error was
0.046 / 255 or 0.03 percent for both image sizes. While the
maximum error was approximately half that obtained from
SM10 single precision computation, the average error was
reduced by only 10 percent.

For GPU version SM10 operating in double precision
mode, double datatypes are demoted to float datatypes.
Although trigonometric precision does not affect the
maximum and average errors, these are not the same as when
SM10 single precision is used – but they are quite close.
When GPU version SM20 is run in double precision mode,
sincos had zero error, because all errors were measured with
respect to this run. Sincosf and __sincosf produced maximum
error of 0.00302 (effectively zero percent) for the 4Kx4K
reconstructed image, and 0.00339 (effectively zero percent)
for the 8Kx8K image. The average error was 0.0000585 and
0.0000584 (as before, effectively zero percent).

In the case of GPU version SM10 operating in hybrid
precision mode, the maximum and average errors were the
same as for SM10 operating in double precision mode. For
GPU Version SM20 operating in hybrid precision mode, the
maximum and average errors were the same for sincosf, as
well as for the case when these trigonometric functions run in
SM20 double precision mode. However, when sincos was
used in SM20 hybrid mode, the maximum and average errors
were approximately 10-4 and 10-7, respectively, compared to
the “gold standard” SM20 double precision mode with sincos.
As noted previously, SM10 in double precision mode
produced the same errors as SM20 double precision mode.

V. CONCLUSIONS
Synthetic aperture radar image reconstruction via

backprojection is an instance of a class of problems that are
based structurally on the tensor product. With some clever
manipulation, backprojection algorithms can be adapted to a
parallelization strategy based on tiling of the output data
structure (in this case, a reconstructed SAR image). However,
one must also have a projection function that associates a
computationally useful subset of the input data structure (in this
case a SAR pulse array) with each output tile.

In this paper, we present a tiling algorithm for SAR image
reconstruction from thousands of pulses or views. This
algorithms, called BP1, is adapted for implementation on a
single GPU (algorithm BP1sg) and a multi-GPU cluster
(BP1mg) controlled by a multi-core CPU. As theory predicts,
execution time scales inversely with the number of GPU slave
nodes, reaching a speedup of 10x for 10 Nvidia Tesla C2050
GPUs on the Condor architecture. Average image
reconstruction error is within +0.05 percent of grayscale range,
and is negligible in a large portion of the reconstruction
scenarios.

We also present ideas for future work, in which the image
reconstruction algorithm presented herein could be applied to
problems in computed tomography, fluid dynamics, and other
imaging or simulation scenarios based on multiple views.

ACKNOWLEDGMENT
The authors thank the Air Force Research Laboratory for

support for this research under Contract #FA8750-11-C-0182.

REFERENCES
[1] Mita D. Desai and W. Kenneth Jenkins, "Convolution Backprojection

Image Reconstruction for Spotlight Mode Synthetic Aperture Radar"
IEEE Transactions on Image Processing, Vol. 1 No. 4, pp. 505-517,
1992.

[2] Lars M. H. Ulander, Hans Hellsten, Gunnar Stenstrom, "Synthetic-
aperture radar processing using fast factorized back-projection", IEEE

Transactions on Aerospace and Electronic Systems, Vol. 39 No. 3, pp.
760-776, 2003.

[3] Chapman, W., S. Ranka, S. Sahni, M. Schmalz, U. Majumder, L. Moore,
and B. Elton. “Parallel processing techniques for the processing of
synthetic aperture radar data on GPUs”, Proceedings of the IEEE
International Symposium on Signal Processing and Information
Technology (2011).

[4] Yu, J.F., H.-C. Hsiao, Y.-J. Kao, “GPU accelerated tensor contractions
in the plaquette renormalization scheme”, Computers & Fluids, Vol. 45,
pp. 55–58 (2011).

[5] Gorham, L.A. and L.J. Moore, "SAR image formation toolbox for
MATLAB," in Proceedings of the SPIE Conference on Algorithms for
Synthetic Aperture Radar Imagery XVII 7669 (2010).

[6] Casteel, C.H. Jr, L.A. Gorham, M.J. Minardi, S.M. Scarborough, K.D.
Naidu, and U. Majumder. "A challenge problem for 2D/3D imaging of
targets from a volumetric data set in an urban environment",
Proceedings of SPIE Vol. 6568, pp. 65680D-1 (2007).

[7] Gac, N., S. Mancini, M. Desvignes and D. Houzet. "High speed 3D
tomography on CPU, GPU and FPGA", EURASIP Journal on Embedded
Systems - Special issue on design and architectures for signal and image
processing, Vol. 2008, Article 5 (2008).

[8] Ledley, R.S. “Introduction to computerized tomography”, Comput. Biol.
Med., Vol. 6, pp. 239–246 (1976).

[9] Vardi Y, "Network tomography: Estimating source-destination traffic
intensities from link data". Journal of the American Statistical
Association 91: 365-377 (1996).

[10] Brekhovskikh, L. Fundamentals of Ocean Acoustics. Third Edition,
Springer Verlag (2003).

[11] "NVIDIA Programming Guide - Version 2.2." April 2009.
[12] Bueno, J., L. Martinell, A. Duran, M. Farreras, X. Martorell, R.M.

Badia, E. Ayguadé, and J. Labarta: “Productive cluster programming
with OmpSs”. Proceedings Euro-Par 12:555-566 (2011).

[13] W. Chapman, S. Ranka, S. Sahni, M. Schmalz, and U. Majumder,
“Parallel processing techniques for the processing of synthetic aperture
radar data on FPGAs”, Proc. IEEE International Symposium on Signal
Processing and Information Technology (2010).

[14] Luley, R., C. Usmail, and M. Barnell. “Energy efficiency evaluation and
benchmarking of AFRL's Condor high performance computer”, in
Proceedings of the Department of Defense High Performance
Computing Modernization Program's 2011 User Group Conference,
Portland, OR (2011).

	I. Introduction
	II. Theoretical and Practical Background
	A. Single-Stage SAR Backprojection Algorithm

	II. Theoretical and Practical Background
	B. Related Work
	C. Graphics Processing Unit (GPU)

	III. Multi GPU Algorithm Design and Implementation
	A. Algorithm-to-Architecture Mapping Technique
	B. Code Examples

	IV. Experimental Results and Discussion
	A. Runtime Measurement and Analysis
	B. Reconstruction Error Measurement and Analysis

	V. Conclusions
	Acknowledgment
	References

